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ABSTRACT 
 
Collective intelligence has been defined as the ability of a group to provide more effective solutions to 
problems than could be otherwise provided by any of its individual members working alone.  Social-
structures are the means by which humans are able to synergistically combine their efforts to provide high-
quality solutions to the problems facing the group.  Over time, these structures have grown in scale and 
complexity to encompass political institutions that span vast landscapes of heterogeneous individuals to 
militaristic forms capable of orchestrating effective large-scale behavioral feats.  With computer and 
network technologies, the potential for more advanced societal-scale information-processing systems is 
now possible such that a general-purpose societal-scale decision-support system may begin to be 
envisioned.  Unlike typical group decision-support research, a societal-scale system is faced with both a 
heterogeneous user population and problem-space.  In designing such a system it is important to understand 
how the ‘collective’s mind’ is modeled via a shared mental map of the group and how the ‘collective’s 
mindset’ is maintained over fluctuating participation levels of its constituent members.  Methods in both 
problem-space partitioning and group preference modeling are presented within a theoretical and design 
framework to further the potential development of a societal-scale decision-support system capable of 
providing synergistically derived solutions to any representable problem.  In concert, all of these ideas 
provide the foundation for the implementation of societal-scale decision-making system in a real-world 
context. 
 

1 INTRODUCTION 
 
The area of human-collective problem-solving, from the vantage point of computer science, has been 
studied primarily in the research agenda of group decision-support systems.  Work previous to this moment 
has focused primarily on computer support systems for small groups in a particular problem-domain 
(Fjermestad & Hiltz, 1997).  It is only recently that research efforts have begun to move away from small-
group decision-support systems to societal-scale decision-support systems (Turoff, et al. 2002).  In these 
efforts, large-scale decision-support system development has come to realize necessary research efforts 
revolving around fluctuating group participation (Rodriguez & Steinbock 2004), problem modeling 
(Heylighen 1988), decision-making for natural-language problems (Turoff, et al. 2002), and general 
computer-mediated collaboration techniques (Nikos, et al. 1999; Smith 1995).  This thesis presents two 
theoretical advances focusing on maintaining the collective’s perspective during times of lossy 
participation and problem-space modeling in computer-mediated collaborative workspaces.  Together 
these two ideas provide advances in the area of societal-scale decision-support systems. 
 
Dynamically Distributed Democracy, DDD, is a social network and accompanying energy distribution 
algorithm that provides a representative structure to an organization such that competent individuals—as 
seen through the eyes of the group—have a higher degree of influence in domain-specific problem-solving 
processes.  This algorithm is demonstrated through simulation to have benefits in scalability because the 
ability for it to accurately represent the group is mainly a function of the connectivity of the network and 
less of the participation of its members (Rodriguez & Steinbock 2004).  DDD provides the mechanism by 
which any active subset of the population is weighted appropriately such that this subset is a holographic 
model1  of the group as a whole.  This idea has impact in large-scale decision-support system research 
where representing the group’s perspective over fluctuating participation levels across heterogeneous 
problem-domains is of utmost importance—ensuring civil stability through an accurate model of the 
collective’s will. 
 
Organizational Domains, OD, are the second novel concept provided by this thesis.  Organizational 
domains provide another layer of complexity to the DDD paradigm supporting a means by which the group 

                                                
1 Holographic modeling is related to holographic images where any portion of the image is a lower-resolution representation of the 
whole image.  Group holography refers to representing the behavior of the whole within a subset of the whole. 
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can organize its problem-space into manageable problem-domain subsets.  This, in turn, not only allows 
problem classification, but also allows individuals to partition their understanding of one another’s 
competence in problem-domain categories thus further refining the group’s self-reflective model.  An 
algorithm is then presented which allows an individual to determine the collective’s realizations of their 
area of expertise—their domain of maximum energy potential.  This algorithm has benefits in societal-scale 
decision-support research where task distribution and influence in decision-making processes are 
determined by domain specific attributes of the individuals participating in the group. 
 
The first part to this work provides a theoretical problem-solving system framework and demonstrates how 
the ideas aforementioned are applied.  This framework is then further refined into a general design 
specification to provide the reader a practical understanding of how such a system would be built and 
deployed in a real-world environment.  The final section of the thesis discusses how a system 
implementation would be evaluated in a real-world context.  In concert, all of these ideas provide the 
foundation for a societal-scale information-processing environment capable of harnessing the collective 
potential of the group to solve any representable problems. 

 
1.1 Foundations for Human-Collective Problem-Solving 
 
This section provides the foundation for understanding collective-intelligence and presents some novel 
concepts that support the realization of a societal-scale human-collective decision-support system.  These 
theoretical ideas will play a major role in understanding how DDD and OD can be implemented in a real 
world system. 
 

1.1.1 The Environment and the Collective Realization 
 
The ‘objective’ environment shared by a collective of individuals has no inherent property that supports the 
realization of a ‘problem’ separate from the internal workings of the group cognition.  Therefore, to any 
subset of the collective, a problem is a perceived portion of reality that under the proper transformation 
could potentially provide a greater utility than presently realized (Heylighen 1988, 1990).  From the 
discipline of cybernetics, it has been argued that the environment is constructed based upon the perceived 
needs of the individual (Gaines 1995; Heylighen 2000).  This idea is supported up to the collective in that 
the group shares a common understanding of the external environment in so much that the members share 
the same perceptual mechanisms (physical perceptors as well as internal models such as language and 
culture) and in so doing are able to come to a realization of a collective-subjective environment.  Without a 
shared environmental realization, the notion of a problem would only be an internal concept represented 
within the modeling framework of the individual’s cognitive faculties.  If a problem is to be solved in a 
collective fashion, there must exist a model of that problem, within a shared medium of the group, by 
which that problem can be communicated amongst members of the group (Hutchins 1995; Heylighen 
1999).  Therefore, a problem-model is a formal representation, within a shared-medium, of a low-utility 
aspect of the collective’s environment. Individuals then review the problem-model in order to formalize a 
solution-model that satisfies the problem-model’s constraints—irrespective of any rippling deleterious 
effects it may incur on other aspects of the environment.  Finally, the solution will be defined as the 
perceptible environmental outcome of the implementation of the formalized solution-model.  This lays the 
foundation for a canonical understanding of how an environment is perceived to have problems that need to 
be solved via some problem-solving mechanism. 
 

1.1.2 Problem/Solution-Space and the Collective Workspace 
 
As individuals within the group interact with their environment, they go through the process of problem 
modeling.  The collection of all problem-models within the group can be called the group’s problem-space.  
It is within this space that these problem-models are transformed into their respective solution-models to be 
stored within the group’s solution-space.  The formalized solution-models, within the solution-space, are 
then implemented as the collectively agreed upon course of action.  The problem-space and solution-space 
representations can be seen as the collective-workspace by which these humans represent and share their 
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ideas about the world (Hutchins 1995; Twidale et al., 1997).  Again, without this collective medium, 
problem-solving would exist solely within the modeling framework of an individual’s cognitive faculties 
and would not benefit from a collective effort (Heylighen 1988).  It is through this shared medium that the 
cognitive resources of the collective can synergistically coexist to formulate solutions that are greater than 
what could possibly be achieved by any individual working alone.  All italicized ideas mentioned above are 
represented below [Figure 1]. 
 
 

 

 
 

Figure 1: A Canonical Model of a Collective Problem-Solving Process 
 
It is important to note that in the collective problem-solving effort outlined in Figure 1, there exists no 
collaboration among individuals.  This simplistic model does not take advantage of the collective’s ability 
to synergistically provide higher-quality solutions, but instead takes advantage of the group synergistic 
ability to generate a higher throughput of solutions since environmental problems are solved in a parallel 
effort.  Representing collaborative problem-solving would only complicate a preliminary grasp of these 
concepts. 
 
1.1.3 Problem-Modeling and Decision-Making 
 
In the canonical model presented in Figure 1, each individual within the group is capable of formulating a 
problem-model without collaboration with other group members.  In a real-world scenario, this becomes 
increasingly difficult as the complexity of the problems begin to grow larger than what an individual’s 
mental framework can model.  In such cases, problem-modeling may only require one individual to make 
an initial shallow realization of the problem, but through a more in-depth analysis, spanning various 
domains, a collaborative effort of domain specialists would be required to create an accurate collective 
model of the problem.  The act of formulating a problem is called problem-modeling. 
 
Representing a problem is an important step in problem-solving since a good representation can make a 
hard problem trivial, and a bad representation make a trivial problem hard (Heylighen 1999, Russel & 
Norvig 1995).  For this reason, a selection process must occur in which problem models are judged, by the 
group, according to their potential at providing a low-energy effort in the solution-modeling process.  The 
decision-making process is a selection process since it doesn’t generate new problem-models but instead 
selects high-quality models.  As demonstrated in Figure 2, the problem-modeling stage generally sees a 
growth in the number of problem-models and through the decision-making stage this model pool is pruned 
down to the most optimal model as seen by the group.  Together problem-modeling and decision-making is 
the problem-generation process.  
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Figure 2: Size of Problem-Model Pool over the Problem-Generation Process 

 
1.1.4 Solution-Modeling and Decision-Making 
 
Once a problem has been modeled within the problem-space, the collective can begin to transform that 
problem-model into a solution-model ready for implementation in the environment.  In order to take 
advantage of a collaborative effort, two distinct stages must first be traversed.  Solution-modeling is the 
process by which individuals review the problem-model, understand the issue at hand, and via the use of 
their internal cognitive machinery, generate a collection of solution-models that may be of potential use.  
Hybrid solutions may then be formalized via the act of collaboration.  At the end of the solution-modeling 
process the solution-model pool, like the problem-model pool, must be trimmed via a selection process.  In 
order to yield a single solution-model for the problem, the group must enter a decision-making process in 
which the group collectively decides, via some voting algorithm, which solution-model should be 
implemented.  This two-stage model is coined here as the solution-generation process. 
 

 
 

Figure 3: Solution-Generation Process Model 
 
The above example demonstrates how a problem-model is transformed into a solution-model via the 
solution-generation process.  It is important to note that this same principle applies to the way in which a 
perceived environmental problem is transformed into a problem-model.  In Figure 3, there are three human 
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participants actively involved in solution-generation.  At first, each individual reviews the problem-model 
and provides their own unique solution-model based solely on their specific internal realizations.  Once 
these three solutions-models have been represented in the solution-space, the individuals are able to analyze 
each other’s models such that they may generate new and potentially higher quality solution-models.  After 
a certain limit (context dependant), the group enters the decision-making process in which the models in the 
solution pool are voted on.  A voting algorithm (context dependant) is able to aggregate the preferences of 
the individuals to yield a model that is reflective of the group’s perspective.  
 

1.1.5 Voting Algorithms and the Context 
 
The areas of social choice theory and machine learning are full of algorithms by which a collective can 
aggregate the individual perspectives of its members in order to yield a collective perspective (Alton-
Scheidl, et al 1997).  Different algorithms are more appropriate than others depending on the context for 
which they are needed.  For example, where a numeric solution is required, simply averaging the views of 
all the individuals may be sufficient.  For more linguistic models, where numeric averaging isn’t possible, a 
Borda-Count or majority vote over various annotations may be the appropriate method.  It is up to the 
problem-modelers and solution-modelers to decide the appropriate voting algorithm used to filter the model 
pools.  This obviously leads to the recursive paradox of voting on how to vote.  Therefore, it is up to the 
system implementers to decide how such algorithms are to be selected given the context of the model. 
 

1.1.6 Problem-Solving as the Unification of all Processes 
 
Problem-solving is the unification of all the modeling and decision-making processes described above.  
This is the general idea that a collective-subjective environmental problem is modeled in a collaborative 
effort and then solved via a similar mechanism.  Problem-solving also encompasses the act of 
implementing the collective’s solution and thus completing the loop—bringing the group closer to 
equilibrium with its perceived environment. 

 

 
Figure 4: Problem-Solving as the Unification of all Processes 

 

1.1.7 Model-Quality vs. Model-Throughput 
 
During any problem-solving endeavor there exist two main complimentary model attributes that are 
balanced in accord with the constraints impinged by the context.  Model-quality can be defined as the 
effectiveness of the model at providing the next stage of problem-solving a low-energy effort.  Where a 
high-quality problem-model tends to represent a problem so clearly that a solution is easily determined 
(Heylighen 1988).  Likewise, a high-quality solution-model can be seen as one that generates a high-utility 
outcome or as one that reduces the propagation of ill effects to other areas of the environment.  In general, 
the ability to produce quality solutions is a function of the level of expertise of the group as well as the 
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amount of time they have to problem-solve.  Thus the model-throughput of the group is constrained by the 
group’s desired level of model-quality.  The general principle is that higher-quality models tend to require 
more time to generate (Steinbock, et al. 2001).   
 

1.2 Group vs. Societal Decision-Support Systems 
 
There has been much literature published in the domain of group decision-support systems.  This section 
provides arguments for why typical group decision-support research differs from societal-scale decision-
support research. 
 

1.2.1 Heterogeneity of Individuals and Problems 
 
Group decision-support systems are usually built for a particular problem-solving domain in which the 
individuals participating in the group decision process are of similar background in terms of the type and 
level of expertise that they share (Turoff 2002).  More advanced, cross-domain systems do exist to support 
complex problem-solving, but still at this level, the type of expertise is explicit in the system design.  The 
reason for this is that most decision-support systems rely heavily on human interfaces tailored to a 
particular domain (Nikos, et al. 1999).  A general-purpose system wouldn’t have this luxury save through 
domain-specific extensions to a basic implementation.  Also, a general-purpose system hopes to tap 
collective intelligence on a societal-scale.  In doing so, the problems realized by the group and the expertise 
of the group are extremely diverse in topic and depth.  Therefore, unlike group decision-support system 
research, a societal-scale decision-support system would need formalized requirements regarding the ad 
hoc categorization of the expertise of its individuals and their problems as they are realized by the 
collective. 
 
The two novel approaches presented by this thesis have an explicit understanding of the diversity in both 
the problems and the population.  The DDD social-network enables the group to create a bottom-up peer-
reflective understanding of the varying degrees of expertise of each individual over the discourse of 
problem-domains. Furthermore, these domains are generated over time—from a preliminary ‘tabula rasa’ 
representation—as individuals come to categorize the nature of their perceived problems.  It is only through 
the union of each individual’s categories that a collective realization of the problem space can be 
understood.  Therefore, unlike the top-down development of group decision-support system, the societal 
decision-support system makes no explicit claim to the type of problems that will face the group, nor to the 
type of members that will compose the group.  This information, in this problem-solving engine, is 
formulated via a self-organizing bottom-up methodology as individuals interact with each other and with 
the environment at large. 
 

1.2.2 Fluctuating Participation and the Collective Perspective 
 
The collective perspective, as defined by this thesis, is the realized course of action by the group in the case 
that every member participated in the problem-solving process.  As members abstain from participation, the 
ability for the group to maintain that perspective defines how well the collective’s self-model is able to 
handle fluctuating participation levels.  With division of labor and parallel decision-making, dealing with 
fluctuating participation levels is of utmost importance.  The idea of the collective perspective, as seen in 
this thesis, makes no rational claim as to the most accurate voting algorithm.  The ideas presented lie 
directly beneath this abstraction and therefore the voting optimizations are left to the research of social 
choice and economic theorists.  The idea of the collective perspective is made more explicit in opinion-
based decision-making such as seen in value-based political polling.  When all individuals actively vote on 
their opinion, the final decision, provided by the voting algorithm determines the collective’s will.  If the 
group maintains a model for holographically representing itself then as members refrain from voting, the 
same opinion poll would yield (essentially) the same outcome as the full participation vote.  The ability for 
a group to represent itself over a subset of its population determines the ability by which that group is able 
to represent the collective perspective over varying degrees of participation. 
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In typical group decision-support system research, the collective perspective is upheld via a requirement of 
the participation of all members in all decision processes.  In these systems, fluctuating participation can 
have dramatic effects on the solution quality of the group (Steinbock, et al. 2002).  As the participation 
level of the group dwindles, the amount of solution-models generated decreases.  This may not be so 
ominous if the remaining individuals are experts generating high-quality solutions.  However, when 
decision-making is required, the voice of non-expert individuals may outnumber the experts and the group 
may choose non-optimal solution models.  Therefore, full group participation in small groups is realized via 
asynchronous support mechanisms.  In such scenarios, decision-making usually happens on a time limit in 
which group members make their choice within a time window, thus ensuring a higher potential for full 
participation while not requiring simultaneous participation (Fjemestad & Hiltz, 1997).   
 
In a societal-scale system, the ability for the full group to participate in all decision processes is impractical 
and potentially impossible.  In light of this, the collective perspective must be represented without explicit 
reference to the aggregation of each member’s decision.  The social network algorithm presented in this 
thesis provides a holographic model of the group’s perspective via a representative power structure that 
modulates over varying degrees of participation.  Unlike standard representative structures where decision-
makers are expected to participate, this model makes no explicit reference to a representative, in so much 
that representatives are those individuals who are participating and have a decision-strength greater than 
their own individual power. 
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2 DECISION-SUPPORT SYSTEM ARCHITECTURE 
 
The architecture of a simplified example system is now presented before moving onto the detailed 
discussion of the algorithms that support this structure.  The purpose of this simplified system is to provide 
the reader with a concrete framework in which to relate the theoretical models and a real-world scenario.  
The system described is basic in design and therefore does not embody the full potential of what a fully-
fledged system could provide (both in usability and functionality), nor does this high-level design address 
all of the issues a real system would need to confront, such as security, distribution, load management, and 
fault tolerance. 
 
This basic system is composed of two main functional components.  One component, called the collective 
workspace component, comprises the shared medium by which individuals are able to represent their 
problem-models and solution-models.  The second component, called the decision-support social network 
component, performs the power distribution computation to bias the relative influence of various 
individuals within the collective workspace.   
 

2.1 Collective Workspace Component 
 
Problem representations are stored within the problem-space according to their domain specific 
categorization (Figure 5-Left).  Since group decision-support system research has focused mainly on 
domain-specific implementations, a general-purpose design must provide the user a method by which they 
can categorize their problems.  This idea not only provides a means by which models can be categorized, 
but also plays a major part in understanding how a heterogeneous population can be organized according to 
their respective areas of expertise. 
 

    
Figure 5: Problem-Space Representation (Left) and Problem-Model Representation (Right) 

 
In this simple system, individuals are able to create linguistic models of their problems such that other 
individuals, competent in the problem-domain, are able to provide the appropriate solution-models (Figure 
5-Right).  As individuals interact with a particular domain of the problem-space, they are able to select 
problems that they believe they may be competent enough to provide solutions to.  In such a case, 
individuals are able to see which solutions have been provided by other users as a means of backing 
solutions they feel are correct or, in the case that no satisfactory solution-model exists, they may provide a 
model of their own making. 
 
Voting on a particular solution-model to a problem-model is the way by which the decision-making process 
proceeds such that the solution-pool of a problem-model is pruned to the one optimal solution-model as 
seen by the group.  Time constraints may be imposed to provide a deadline by which individuals are able to 
provide solution-models as well as decide which solution-model they feel is most appropriate given the 
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problem-model.  In order to bias the relative influence of individuals within the decision-making process, a 
decision-support social network component can be used within this system. 
 

2.2 Decision-Support Social Network Component 
 

The decision-support social network component provides the power structure that regulates a user’s 
involvement in the collective workspace.  The purpose of this network is to provide a ranking system by 
which solution and problem-models can be organized.  When model pools need to be pruned, lower 
ranking models can be removed.  When a model must be chosen, high ranking models can be selected.  
This network can also be used by an individual to get the groups perspective on their level of their expertise 
within a particular problem domain relative to others within the group.   

 

 
Figure 6: The collective workspace component and its processes regulated by the social network 

 
In Figure 6, the problem-generation (PG) and the solution-generation (SG) processes are both regulated by 
the decision-support social network.  This allows individual models to have a visibility in the collective 
workspace as well as determining the relative decision strength of individuals as they vote on models 
during decision-making processes.  The following section describes the algorithmic process governing the 
decision-support social network.    



 13 

 

3 DYNAMICALLY DISTRIBUTED DEMOCRACY 
 
DDD serves two main functional purposes within a societal-scale decision-support system.  First, DDD is a 
domain specific power dissemination algorithm that allows individuals to explicitly represent the relative 
competence of one another over all domains of inquiry. Any individual may actively participate in any 
problem-solving process, but it is only through the aggregation of power from non-participating individuals 
that they acquire relative weight within the process.  The meaning and effect of this power is left to 
implementation specifics but on preliminary insight, power in decision-making can be thought of as vote 
strength while power in collaborative modeling can be seen as the visibility of one’s models to the group.  
Secondly, DDD is an algorithm by which individuals can realize their domain specific power such that they 
can better assess their relative contribution and potential function within the system.  Individuals are 
constantly peer-reviewed so that as their abilities in one domain wanes, they may find their participation 
better suited in another.  Therefore, an individual’s area of expertise is made explicit through the dynamic 
energy distribution within the DDD network. 
 
Before describing the DDD algorithm, a framework is presented for understanding how DDD fits within 
other structures of power currently expressed in large-scale decision-making systems.  The idea of 
representation is the canonical model for understanding what it means to have power in a system.  The 
more representative an individual is of the societal will, the more individuals they are able to model and 
thus the idea of social compression will be discussed.  The collective perspective is maintained over role 
specification, parallel decision-making, and lossy participation via the use of representation.  When an 
individual is participating in a problem-solving effort with a subset of the population, determining the 
relative representative power of that individual is important in understanding how much influence that 
individual should have in that domain.  This power distribution over any subset of the group represents the 
collective’s holographic self-reflective model. 
 

3.1 Models of Power and Degrees of Representation 
 
When organizations are faced with decisions to make, it becomes impractical for all members of the 
institution to have an active participatory say in each problem-solving process.  The reason for this is 
twofold.  Firstly, the overload problem is encountered when an organization does not have the proper 
information-processing infrastructure to handle the large-scale inundation of the models and decisions of all 
its members.  Secondly, the expert problem states that in a heterogeneous population, not all members of 
the institution are capable of providing useful contributions to the problem-solving effort in all domains.  
Therefore, the full participation of all members may only incur deleterious noise in the problem-solving 
process.  These two issues, separately and together, have been the driving factors that have caused human 
organizations to adopt representational power structures as a means of isolating those individuals who are 
competent in particular domains as being representatives of a subset of the collective.  In adopting such a 
system, the group is balancing the potential for high-quality solutions via a larger solution pool to choose 
from and at expediting the decision-making process by limiting the amount of processing required to 
generate the solution output. 
 

3.1.1 Representation as a Social Compression Technique 
 
Utilizing a representative power structure is a technique that a collective can use to compress its 
perspective over a smaller set of representing individuals.  The benefits of this is that the group is able to 
limit the amount of information processing required to solve problems since decision-making can happen 
over a smaller subset of the population—thus combating the overload problem.  On the other hand, like 
most compression techniques, as the compression ratio increases between those that are being represented 
to those representing, the ability of the representatives to capture the perspective of their constituents 
becomes increasingly difficult. 
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3.1.2 Degrees of Representation as the Universal Model 
 
Any form of decision-making contains a form of representation.  In purely totalitarian systems, there exists 
one individual who is the representative of the entire group.  In such cases, the degree by which the 
collective perspective is upheld is limited since only one individual is modeling the group’s intentions and 
therefore a totalitarian power structure is a gross lossy compression of the whole.  Nevertheless, such a 
form of power is considered the extreme of a one-to-many representative structure.  At the other extreme, 
lies the case where each individual equally participates in the group problem-solving process.  This is seen 
in direct democratic institutions where everyone has an equal participatory say in all matters concerning the 
institutions evolution.  Such institutions model the collective perspective perfectly since there exists no 
compression of perspective into representative individuals.  Such a model is a one-to-one representative 
structure.  In between these two models lie varying degrees of representation which, given the context of 
the problem, differ as to ensure the constraints of the problem are met—solution-quality vs. solution-
throughput. 
 

3.1.3 Free-Degree Representation as the Universal Framework 
 
A free-degree representation framework is a representational infrastructure that allows a system to 
dynamically modulate its power structure according to the constraints of the environment—problem 
constraints, participation fluctuations.  Therefore as problem-solving efforts are parallelized and individual 
participation ebbs and flows, a free-degree system automatically adjusts to account for the context of the 
problem-solving process in order to uphold the collective-perspective over those actively participating 
members.  The idea is that there is no inherent power structure in a system until a problem-solving effort is 
initiated.  Only through participation are individuals able to influence the system and only through non-
participation are they able to influence the relative power of those participating individuals.  The dynamics 
of representation is based solely on the activity of the individuals in the problem-solving process. 
 

 
Figure 7: Free-degree of Representation in a Decision-Making Process 

 
According Figure 7, suppose there exists a decision-support system composed of six individuals and, at the 
present moment in time, two parallel problem-solving efforts.  If the environment were such that both 
problem-solving efforts were required to produce a solution at the same time then the collective would have 
to diverge its focus in order to accommodate the constraint.  For this reason, imagine that three individuals 
(H1, H2, H3) proceeded to participate in problem-solving process A (PSP-A).  While, similarly, the other 
three individuals (H4, H5, H6) actively participated in problem-solving process B (PSP-B).  Because of 
representation, in PSP-A, H2 has the most influence in the process relative to H1 and H3 (via support 
links).  This demonstrates that H5 and H6 are able to indirectly represent their perspective in the PSP-A 
through the use of representation and thus both processes are able to maintain, albeit of lower-resolution, 
the collective perspective. 
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A free-degree structure is one that explicitly models the support links between different individuals such 
that once an individual is unable to participate in a particular problem-solving process, their influence is 
propagated to a representative of their perspective.  This is dubbed a free-degree model since only given a 
particular context will the degrees of representation be made explicit.  Therefore the resolution of 
representation is a real-time variable dependant on the participation of individuals—the context. 
 

3.1.4 Static vs. Dynamic Representative Models 
 
An important area of research in societal-scale decision-making systems is handling the issue of fluctuating 
participation levels (Turoff et. al, 2002).  In systems that demand that there be an explicit set of static 
representatives, these representatives must constantly participate in all decision-making processes if the 
perspective of their constituents is to be represented.  When a system encounters fluctuating participation 
from its members, a more dynamic representative system may be used where individuals that actively 
participate are representatives of those that do no actively participate.  In this sense, representatives are 
dynamic based upon the activity levels of the population as a whole.   
 

3.2 Examples of Degrees of Representation 
 
The sections that follow provide examples of the varying degrees of representation in a quantitative form.  
These examples of groups of four individuals lay the foundation for understanding how DDD, a free-degree 
representational structure, serves as the optimal structure for collective problem-solving systems since it is 
able to encapsulate all degrees of representation in a context-sensitive manner.  Through the use of these 
examples and later through the 100-member group simulation we see how DDD is able to maintain the 
collective perspective at low levels of participation and how the connectivity of the DDD network can 
remain relatively low thus giving it an argument for a real-world scenario. 
 

3.2.1 The General Representative Model 
 
The general representative model is concerned with presenting a model by which the degrees of 
representation perspective can be studied in a quantitative manner.  This model provides the necessary 
framework for doing large-scale simulations in order to understand the relative benefits of the varying 
degrees of representation.  For the sake of clarity, the idea of representation will be articulated within the 
idea of power in decision-making as opposed to power in modeling, since decision-making is generally 
more familiar to most readers. 
 
Imagine that there is a collection of individuals comprising a group.  Each individual has a unique opinion 
concerning a figurative problem.  These opinions can vary over the rational numbers between 0.0 and 1.0.  
To put this into a real world context, one could imagine that an opinion of 0.0 refers to a strict republican 
viewpoint while an opinion of 1.0 could refer to a strong democrat and where the ranges between are the 
hybrid perspectives of the more general population.  Next, imagine that each human can either be 
considered actively participating in the group decision-process or not.  A more advanced model that 
incorporates fractional activity is not examined in this thesis but is outlined in a related publication 
(Steinbock & Rodriguez 2004).  In the diagrams that follow, active participation is represented as a star 
inside the circle representing the individual.  Finally, decision aggregation algorithm is the averaging of the 
opinions of all those actively participating in the decision-process and therefore takes on a value between 
0.0 and 1.0.  From here each representative model discussed below will add the appropriate amount of 
complexity to this generic framework to demonstrate a simulation of real world group decision processes. 
 
Before going onto large-scale simulations involving a group size of 100 members, a small group of four 
members is demonstrated with diagrams to help explain the ideas surrounding the various representational 
models.  The results of large-scale simulations will prove more provocative than the contrived examples 
presented next. 
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3.2.2 Zero-Degree Representative Decision Model 
 
In classic direct-democratic decision-making, the decisions generated by the group are based solely on the 
opinions of those individuals that actively participate in the decision process.  In terms of the resolution of 
representation, the representation of the group is a one-to-one mapping for every individual.  When mapped 
to a social network, the network contains no representative edges and therefore is a zero-degree decision-
making network.  In the days of Athens as the mecca of democracy, anyone concerned with group behavior 
could meet in a large town square to actively voice his opinion.  A mediator announced issues and the 
outcome were deduced based on the loudness of the group over the presented options.  This model adds 
nothing to the general model described above.  A certain portion of individuals are selected to participate in 
the group decision and those that do not, do not have an effect on the outcome of the decision.  What is 
apparent is that as member participation decreases, the group decision becomes less of a reflection of the 
desired will of the whole—the collective perspective. 
 

 
Figure 8: Zero-Degree Representative Decision Model 

 
As an example, assume there is a small group composed of four individuals, each with a generic 
representation of their opinion type.  If only 50% of the individuals are able to actively participate in the 
decision process the decision is determined by creating a mean average of only those active members’ 
opinions.  In  the equations below, the set A is the set of all active members in the decision process while 
the set N is the set of all members both inactive and active in the group. 
 

∑
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For this particular example, where a star represents active members, the group decision would be the mean 
of a 0.9 opinion and a 0.5 opinion yielding a group decision of 0.7.  The error induced by this model is 
calculated by determining the difference between the generated decision and the decision determined by 
full group participation since full participation would yield a group decision that models the groups will 
perfectly—a perfect representation of the collective perspective.  
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The perfect decision yields a group decision of 0.75.  Therefore, the error induced by the zero-degree 
decision model in this particular example yields an error of 0.05 as determined by the decision error 
equation below—where the calculated decision is the value determined by Equation 1. 
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 DCDPED ecisionalculatedecisionerfectrrorecision  -   =  (3) 
 
A zero-degree network provides the mechanism by which a perfect group vote could be achieved in the 
case where 100% of the population was able to participate in every decision process, but in societal-scale 
decision-making, this is generally not the case.  With many decisions varying over many domains, each 
individual neither has the time to participate in every decision, nor do they have the expertise in every 
domain to express an intelligent perspective.  It is for this reason that a zero-degree network offers little 
benefit to large-scale problem-solving efforts. 
 

3.2.3 One-Degree Representative Decision Model 
 
Large institutions, troubled by the overload problem, usually provide mechanisms to allow its members to 
choose a representative of their opinion.  Using representative decision-making overcomes the 
communication issue of aggregating the perspectives of all participating individuals and allows non-expert 
individuals to have expert individuals speak on their behalf. 
 

 
Figure 9: One-Degree Representative Decision Model 

 
Using the same group as presented in Figure 8 Figure 9 demonstrates how a representative is able to 
aggregate more power based on the number of individuals he represents.  Therefore, adding to the generic 
framework is the concept of energy, weight, or power, in the representative’s opinion. Non-representative 
humans choose representatives that are closest to their opinion.  This is why both HumanA and HumanB 
have picked HumanD as their representative since they only have a 0.1 difference of opinion with HumanD 
while with HumanC there is 0.3 difference.   
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The calculated group decision, in this example, is a 0.8 and therefore has a decision error of 0.05.  A one-
degree network allows a group to model its entire population, but as the proportion of non-representatives 
to representatives increases the modeling ability of the group decreases.  Furthermore, two ramifications 
associated with static representation structures are noticed. First, HumanA and HumanB are statically non-
active participants and therefore static representative structures are only able to utilize the indirect abilities 
of these individuals to choose representatives—reducing the potential for quality solutions.  Secondly, 
individuals in these structures select one representative of their perspective while a distribution over many 
representatives may be a better model of that individual’s perspective.  Together these issues make static 
one-degree structures unrealistic for a societal-scale problem-solving. 
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3.2.4 Dynamically Distributed Democracy Decision Model 
 
Dynamically distributed democracy, or DDD, in its most simplistic form, is expressed as a free-degree 
social network structure and accompanying power distribution algorithm (Rodriguez & Steinbock 2004; 
Steinbock & Rodriguez 2004).  For the sake of simplicity, this example form assumes the group is 
operating within a single problem-domain.  Organizational domain models and their effect on the network 
only complicate an immediate understanding of DDD and therefore will be addressed in the second half of 
this thesis.  What DDD adds to the generic representational framework is the concept of a weighted 
distribution of representation.  Individuals are able to select multiple representatives of their perspective 
and distribute their decision power to these representatives based on a difference of opinion that each 
discovered representative has relative to them.  A discovered representative is different from the standard 
notion of a representative in the sense that there is no explicit understanding of a hierarchy (and its explicit 
roles) in this model of decision-making—individuals do not choose amongst a pre-determined set of 
representatives.  Individuals, through their experiences with the group, are able to identify others that, time 
and time again, represent their opinions or subjectively express a superior level of competence.  The group 
structure self-organizes as members interact with each other and the problem-domain.  Therefore the model 
of the individual is the shared mental model created by all the members of the group.  Member 
representation is not self-reference, but peer-reference. 
 
node Human that distributes or aggregates energy particles 
   activation Whether or not that human is participating in the decision-making process 
edges Directed edges leaving a node represent that nodes representative preference model 
   value The probability that an energy particle will propagate over that edge 
energy The social force that a node possesses and may distribute to its preferred representatives 

 
Table 1: DDD social network terms and definitions 

 
In a particular problem-domain the nodes of the graph represent the individuals that constitute the group.  
The edges represent the weighted preference that each individual has regarding the belief that the human 
node receiving the incoming edge represents their opinion in regards to this particular problem-domain.  In 
the extreme scenario, all individuals of the group may actively participate in every decision process, but as 
members deem themselves incompetent with regards to the nature of the domain or for any other reason, 
find themselves unable to actively participate in the current matters of the particular domain, these inactive 
human nodes propagate their energy to other nodes that they have deemed fit enough to represent them.  
Energy traverses the network until it reaches an active node, wherein at that point, the particle’s journey is 
complete.  In the other extreme, where all members, save one individual, deem themselves unable to 
participate for whatever reason, a decision-making dictatorship evolves.  Through the single variable of 
activity over a set of individuals, DDD is a free-degree representational structure. 

 
Figure 10: DDD as a Free-degree Representative Decision Model 
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In the example provided in Figure 10, the same four-member group is seen again; only this time each node 
maintains a preference model of their randomly discovered members of the group—a  preference model is 
defined as the set of outgoing edges from an individual.  Each edge is given a preference value based on the 
difference of opinion between the two nodes.  These values are then normalized to 1.0 in order to generate 
an energy particle dissemination probability distribution over the edges.  
 

( ) || 1 jiji opinionopinion,nnEdgeValue −−=  (5) 

 
Unlike the static one-degree representative model presented previous, representation is not a strict 
relationship between an inactive node and an active node. Instead, an inactive node’s energy particles are 
able to move to other inactive nodes as well as to other active nodes in a probabilistic manner such that 
each node is able to distribute it’s decision power across an array of different active nodes.  More 
figuratively, when an inactive node passes its energy to another inactive node, such as seen from HumanA 
to HumanB, HumanA is not supporting the decisions of HumanB since HumanB is not actively 
participating, but instead HumanA is supporting HumanB’s preference model. Therefore a representative 
can be an active decision-maker or an individual seen as having a desirable preference model.  The decision 
algorithm is the same as the opinion aggregation algorithm of the previous one-degree model. 
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When a group decision is needed, the nodes either disseminate energy particles (inactive nodes) or sink 
collected energy particles into their opinion (active nodes).  The preference model of a node is only useful 
when a node is inactive and serves no functional purpose for active nodes.  Therefore, in the above 
example, the preference model of HumanC (the directed edges going to HumanA and HumanB) does not 
serve a purpose in this particular computation of the group decision, but may do so in a future decision if 
HumanC becomes inactive for any reason.  HumanA is an inactive node whose preference model has a 
100% probability of passing its decision energy to inactive HumanB.  HumanB then passes both its 
originally assigned energy and the energy collected from HumanA to HumanC and HumanD according to 
the probability of their respective preference edge.  HumanC and HumanD, being active participants in the 
decision, collect the energy given to them and use that energy to amplify the strength of their opinion. 
 
When this group utilizes DDD during its group decision process, during an equivalent 50% participation 
level, DDD dampens the effects of a limited participation and incurs a 0.0 decision-error, which is a group 
decision of 0.75.  The distribution of energy over the active members of the group represents the relative 
power that those active individuals have in determining the outcome of the decision at hand.  The energy 
distribution algorithm provides a runtime mechanism by which active individuals of a group are selected as 
context-dependant representatives of the inactive members.  The more energy an active member has at a 
particular point in time, the more representative that individual is of the group such that energy patterns 
over the active member subset represents a self-reflective model of the collective perspective with respect 
to all members of the group (Rodriguez & Steinbock 2004).  DDD only articulates which actively 
participating members of the group are more preferred by the whole.  In short, DDD is a framework by 
which a collection of inactive, non-participating, individuals has an indirect effect in the problem-solving 
process via their power distribution over the active, representative, members of the group.  This distribution 
is the holographic model. 

3.2.4.1 Rationale for Statistical Particle Algorithm 
 
DDD is a specific instantiation of the more general confluence network architecture and associated conflux 
particle distribution algorithm used for modeling of dynamical systems (Steinbock & Rodriguez 2004).  If 
an energy particle were to bifurcate and take every possible path as it traversed the network, the energy 
value would quickly lose its numerical precision due to long path lengths and cyclic graphs. Since rounding 
would occur in such cases, the relative energy strengths would yield inaccurate group models.  Instead 
paths provide a probabilistic value governing the energy particle’s route.  The distribution of energy over 
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the active nodes is a statistical measure of the networks energy.  With enough particles, this probabilistic 
method provides a statistically accurate measure of what an infinite-precision bifurcation algorithm would 
provide. 
 

3.2.5 Comparison of Representative Models of Simple Example 
 
The results of the simple four-member different degrees of representation examples are presented below. 
 

Representative Model Model Decision Model Decision Error 
Zero-Degree Decision Model 0.7 0.05 
One-Degree Decision Model 0.8 0.05 
Free-Degree Decision Model 0.75 0.00 

 
Table 2: Results of the Small-Group Examples 

 

3.3 Quantitative Analysis of the Representative Models 
 
The four-member group example provided in the previous section demonstrates a simple example outlining 
the key features of the DDD process relative to other representative models.  Interestingly enough, DDD 
group modeling performance is a function of the connectivity of the inactive individuals and less of a 
function of the size of the active population.  Furthermore optimal group modeling comes at a network 
connectivity of approximately three.  This means that every individual in the population need only know 
three individuals, active or inactive, to provide DDD the correct amount of information to produce an 
optimal collective perspective model.  This section illustrates these findings to a greater degree in the non-
trivial simulation of a group containing 100 members. 
 

3.3.1 Simulation Implementation and Experimental Design Summary 
 
A software simulator was developed to perform parameter sweeps over the various degrees of 
representation models presented previously.  A population of 100 agents with an equal distribution of 
randomly generated opinion values was created for each model.  For direct-democracy simulations, no 
edges were provided between the individuals of the group such that no power distribution in the form of 
representation could occur.  If a member was active then their opinion was considered, if not, then their 
opinion was not.  For higher-degree representative systems, a population subset was selected to be 
representatives of the group.  In one-degree models, non-representative members had a 100% probability of 
giving their power to a single representative that was closest in opinion to their own.  The directed edge 
connection could only go from non-representatives to representatives.  The group decision is then 
determined as the average weighted opinion of all the representatives.  Finally for DDD, edge density 
provided the means by which the power graph could be scaled to test how network degree affected the 
decision error. 
 

3.3.2 Zero-Degree Network and the Error of Non-Participation 

3.3.2.1 Hypothesis and Simulation Design 
 
The only variability that exists in zero-degree decision-networks is the number of active participants in the 
group decision process.  Therefore a one-dimensional parameter sweep over the number of active agents 
was performed to test how zero-degree participation levels affected the group decision error.  Through a 
priori reasoning, it seemed obvious that as the participation level decreased, the amount of error would 
increase.  The function governing this relationship was not known. 
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3.3.2.2 Results and Remarks 
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Graph 1: The Decision Error Relative to the Participation Level in a Zero-degree Model 

 
The results of the simulation verified that as the active population decreased from 100 members down to a 
single individual, the decision error increased.  An exponential function governs the rate at which error is 
incurred.  This simulation demonstrates the limitations of using a zero-degree representational network 
within a societal-scale decision-support system where constant participation in all decision-processes is 
impractical.  As the size of an active population drops, deleterious effects on the collective decision express 
themselves.  This also describes the phenomena of civil unrest in totalitarian systems—systems with one 
active participant.  A single individual is statistically unable to represent the perspective of the collective 
and thus they incur a high decision-error in their choices. 
 

3.3.3 Representative Democracy and the Clustering Effect 

3.3.3.1 Hypothesis and Simulation Design 
 
In this simulation, a random subset of the population is chosen to be active.  Inactive members locate an 
active individual that is closest to their opinion and generate a link to that individual (see Figure 7).  When 
a decision is needed the inactive members provide their active constituent their energy value.  Each inactive 
member has a 100 percent probability of disseminating his or her energy to one active member.  For this 
reason, it is believed that as the ratio between inactive to active members increases, the error will increase 
as well.  The function governing this behavior is a priori unknown. 

3.3.3.2 Results and Remarks 
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Graph 2: The Decision Error Relative to the Participation Level in a One-Degree Model 

 
In Graph 2, when all 100 hundred members are actively participating in the decision-making process, then 
there is a 0.0 error.  As the degree of representation increases to the point where one individual is 
representing the whole group, the error increases via an exponential function.  This model is in exact accord 
with the behavior of the zero-degree model.  It is interesting to note that even though inactive individuals 
are disseminating their energy to the closest representative of their opinion, each representative, on average, 
has an equal say in the decision since from a randomly selected group of individuals, each individual will 
get an equal amount of energy from the inactive subset.  Since each active individual has an equal say, it is 
equivalent to a zero-degree representation.  Therefore, in a heterogeneous population, the probability of 
equality across potential representatives is equal so as the resolution of the representation decreases so does 
the error at a rate equal to non-representation. 
 

3.3.4 Dynamically Distributed Democracy and the Connectivity 
Phenomena 

3.3.4.1 Hypothesis and Simulation Design 
 
Utilizing the DDD framework allows inactive individuals to propagate their decision-making power to 
others within the group, but unlike the one-degree model of the previous example, if a representative is 
inactive, that representative is able to propagate their amassed energy to the individuals they feel are 
competent decision-makers.  Also, since DDD allows individuals to distribute their energy over a range of 
individuals, it is hypothesized that DDD will weaken the effects of representational clustering by providing 
a larger representational body to express their opinion. 
 
Active population size and individual preference model size (or node connectivity) are two variables that 
must be studied to explore how DDD performs when participation levels drop and at what connectivity 
level will DDD perform the best.  It is hypothesized that DDD will suffer an increased decision-error as the 
population of inactive members increases, but it is believed that as DDD connectivity increases, their will 
be a linear relationship governing a decrease in the decision-error. 

3.3.4.2 Results and Remarks 
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Graph 3: The Effect of Node Connectivity on Decision Error over a Series of Participation Levels 

 
Graph 3 represents a series of activity levels over node connectivity values.  What is initially noticed is 
that, for all activity levels, node connectivity of approximately 3 (K≈3) yields the greatest reduction in 
decision error.  After that, there is steady increase in the error of the network as the connectivity increases.  
The major impact of this finding is that individuals need only make reference to approximately 3 other 
individuals in a particular domain for the system to generate an accurate self-reflective model of itself for 
that domain—OD discusses methods to generalize an individual’s preference model over multiple domains.  
If DDD found its optimal model in a K≈N-1 connectivity then it would seem impractical for 
implementation since each individual would have to assess the relative abilities of every other individual in 
the network.  This is both taxing on the individual and impractical for large-scale societal implementations. 
Therefore, the low-connectivity value discovered provides a strong incentive for the implementation of such 
a free-degree representational structure in a societal-scale decision-making system. 
 
An informal mathematical explanation of this low-connectivity can be understood when K=N-1.  If an 
individual were to have a preference model that connected to every other individual in the network the 
probability values would all approach 0 as the limit of N went to infinity.  Therefore for large K values, the 
probability of a particle taking any edge becomes equal and therefore energy dissemination is random.  
This mainly explains why as DDD increases its connectivity, the decision error increase—the graph 
becomes a more random web of interconnectedness. 
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Graph 4: DDD Connectivity Series over an Active Population compared to the zero-degree network 

 
Graph 4 demonstrations that DDD outperforms both static zero and one-degree power models regardless of 
the connectivity of the network.  In the case that DDD is over connected, annealing algorithms could take 
hold to prune the network to a lower connectivity value in order to control the accuracy of the network in 
maintaining the collective-perspective.  Graph 5 demonstrates DDD at K=3 relative to both zero and one-
degree power models.  Notice the significant dampening of error at low participation levels. 
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Graph 5: DDD at K=3 relative to the zero-degree and one-degree networks 
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4 ORGANIZATIONAL-DOMAINS 
 

4.1 Applied Organizational Domains 
 
The DDD framework presented in the previous chapter made no reference to the problem-domain of the 
participating individuals.  For a simple group with a non-diverse problem set, this model suffices.  When 
organizations become more diverse in their decision-making, representing individuals via a single 
representational structure loses meaning.  In the case of such organizations, another layer of complexity can 
be added to the DDD social network. 
 

4.1.1 Domain Edges 
 
In the example below (Figure 11), four individuals are part of a problem solving team for an engineering 
department.  In this engineering department, there exist three disciplines—electrical engineering (EE), 
computer engineering (CE), and computer science (CS).  As the group members interact with each other 
they come to understand the relative skills of each other regarding these separate domains.  For example, 
HumanA, has come to realize that HumanC is excellent at solving problems related to electrical 
engineering.  He also feels that HumanC is more competent at computer engineering problems than 
HumanB.  In order to represent this information in the DDD social network structure, edges are able to 
carry labeled weights such that when a computer engineering problem is needed and HumanD and HumanB 
are the only available active individuals, computer engineering energy flows only over its appropriate 
preference edge. 

 
Figure 11: DDD Network with Domain Edges 

 
As can be seen, HumanB will amass an energy sum that is 1.4 times as great as HumanD since HumanB 
would collect 100% of his own energy and 40% of HumanA’s energy in the CE domain.  Likewise, 
HumanD would only collect his own energy and nothing else.  Even though HumanA propagates 60% of 
his CE energy to HumanC, HumanC maintains no edge reference governing the propagation of CE.  
Therefore, in such a scenario, the energy, unable to disseminate, would die. 
 

4.1.2 Fuzzy-Domain Matrices for Cross-Domain Energy Translations 
 
The energy loss potential when using just domain edges within the group power structure can be alleviated 
to some extent by the addition of individualistic fuzzy-domain models.  Fuzzy-domain models are an 
internal model that each group member maintains regarding the relative similarity between various domains 
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of the group.  In simple groups with a relatively small number of problem domains, it is possible for every 
individual to maintain a preference model for each domain, but as the complexity of the group increases, 
this becomes impractical.  For such societal-scale groups, fuzzy-domain models allow an individual to 
bypass the explicit preference model and instead provide a relationship matrix describing how a domain 
specific energy should be behave when it reaches a preference model that doesn’t support its propagation.  
In essence, a domain matrix is a probabilistic filter affecting the probability of the energy particle utilizing 
another domain’s edge to continue its journey to an active node. 

 

 
Figure 12: Fuzzy-Domain Matrix 

 
Each individual, along with a preference model, is also able to maintain a matrix defining their perceived 
relationship between the different problem-domains of the group.  A matrix cell can take on a value 
between 0.0 and 1.0.  The domain matrix in Figure 12 demonstrates that the individual believes, obviously, 
that the CE domain is exactly like the CE domain.  Furthermore, he also believes the CE domain to be 90% 
like CS and 70% like EE.  For those involved in the engineering discipline, computer engineering and 
computer science are not all that different because of an overlap in the concepts that they express.  
Likewise, computer engineering and electrical engineering share an overlap in concepts as well.  As can be 
seen, this individual believes that computer science is only 20% like electrical engineering but fuzzily, 
electrical is 30% like computer science.  These relationships allow an individual to have an atrophied 
preference model yet still provide the appropriate mechanisms for all domain energy particles to propagate. 
 

 
 

Figure 13: Probabilistic Energy Translation 
 
In the example provided in Figure 13, when a CE energy particle reaches HumanC it is has no explicit CE 
domain edge to traverse.  Since HumanC has made reference to domain edges for CS and EE, the energy 
particle is able to make a probabilistic ‘jump’ across one of these edges such that its journey may continue 
to the active nodes HumanB or HumanD. 
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The algorithm that allows energy translations across different domains is as follows: 
 

1. Multiply all domain edge values that have a corresponding relationship to the particle type in the 
domain matrix by the relationship value. 

2. Sum all edges that lead to the same node together to get a new edge value for the particle type 
domain. 

3. Normalize all effected edges to 1.0 to create a probability distribution for that particles traversal. 
 

 
Figure 14: Energy Translation Algorithm 

 
According to the example provide above, multiply the 0.6 and 0.4 edge values for CS by 0.9 since the 
domain matrix states that CE is 0.9 like CS.  This gets new edge values of 0.54 and 0.34 respectively.  
Next, since CE is 0.7 like EE, multiply the 1.0 domain edge of EE by 0.7 to get a CE domain edge of 0.7.  
Sum all the effected edges going to HumanD to get a CE edge of 1.06.  After normalizing to 1.0, a 
probability distribution for the particle has it so that there is a 33.75% chance of the particle going to 
HumanB and a 66.25% chance of the particle going to HumanD. 
 
DDD works effectively when each domain has a connectivity of ~3.  When an organization has a simple 
problem space, such that there are a limited number of problem domains, simple domain edges suffice.  
When an organization grows and the problem space accrues a set of domains of size n, each node, using 
simple domain edges would be required to supply 3n relationships.  The effort required of the individual 
can be impractical and therefore domain matrices provide a means by which an individual can relate 
domains in much the same way individuals relate each other. 
 

4.1.3 The Full Decision-Making Network 
 
The organization, thus far, can be seen as collective mental model distributed over all the individuals in the 
organization.  The organizations domains are individualistically represented in a subjective manner much 
like the relative skill of each individual is a measure of the collective realization of each individual in the 
group.  The distributed nature of the collective data structure lends to a scalable implementation of DDD in 
a societal-scale decision-support system. 
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Figure 15: Distributed Data Structure of the Decision-Making Network 
 

4.2 Determining an Individual’s Energy Potential 
 
DDD, thus far, has been described as a decision-making network capable of weighting the relative 
influence of participating individuals.   A modified version of DDD can also be used to determine the 
relative influence that an individual has in any domain.  This information is practical for two reasons.  First, 
an individual is able to determine their greatest area of influence and therefore are able to gravitate 
towards problem-solving process where they have greater expertise (i.e. higher influence).  Second, the 
system can automatically determine competent individuals for the purpose of task-distribution or other 
domain-specific processes. 
 
If DDD is run without explicit reference to an active population, then each node will always distribute 
energy over its preference model and, in such a scenario, particles in the network never settle.  Similar to 
Markov decision chain research (Hernandez-Lerma & Lasserre 1999)(Bar-Yam 1997), the network may 
reach an ergodic state in which the energy distribution in the network has settled into a stable pattern even 
though the particles never rest.  This stable energy distribution within a particular problem-domain provides 
an individual with a measure of their ability relative to all other individuals in the group.  For networks 
where stability never occurs, averages over oscillating patterns can be used.  Completely random energy 
patterns would not benefit the system in discovering expert individuals (Steinbock and Rodriguez 2004). 
Furthermore, utilizing multiple problem-domains and taking advantage of non-active DDD allows 
individuals to create high-level expertise constructs for finding and individual who are competent over 
multiple domains (Mockus & Herbsleb 2002).
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5 FUTURE WORK AND CONCLUSION 
 
This section provides the reader with a glimpse of how these ideas may be implemented and tested in a 
real-world situation comprising human participants. 
 

5.1 Development of a Distributed Decision-Making System 
 
When designing a societal-scale decision-making system, scalability is of utmost importance since large-
scale participation is its main use.  At first glance, the development of such a system would depend on an 
agent-based design philosophy where a software agent represents each individual human.  This software 
agent would not only maintain the preference model and domain matrix of the human it represents, but may 
also maintain a portion of the collective workspace.   A distributed system would ensure that the collective 
workspace is seen as the union of all models across the agent population.  The agents in such a system 
would function as the disseminators of both representative energy and workspace models.  Such a design 
would provide the necessary peer-to-peer architectural model needed for scalability to the population at 
large. 
 

5.2 Experimental Design with Human Subjects 
 
The function of a societal-scale decision-making system can have two practical applications.  Firstly, such a 
system could be used by an organization to leverage the collective-intelligence potential of members such 
that the organization could yield high-quality solutions to the problems it perceives.  Secondly, for more 
opinion-based organizations such as political institutions, such a system could be used to better model the 
collective perspective of the group.  Though the simulation demonstrated DDD as a useful algorithm for 
opinion-based systems, a more rigorous experimental framework will be needed to test the collective-
intelligence abilities of the system.  A preliminary sketch of a human subjects experiment for a domain-
specific problem was demonstrated in a previous publication (Steinbock et. al., 2002).  Since a societal-
scale system would be based on a wide problem-space, an augmented experimental design would be 
needed that encompasses many problems from various domains and where the human subject pool is 
eclectic in their relative abilities across all tested domains. 
 
McGraw-Hill®, in 2002, asked our collective intelligence research group to aid in the development of a 
system that would allow any individual in the world to participate in the generation of problems for the 
standardized test development area of their organization.  McGraw-Hill® makes standardized tests for 
various domains such as Spanish vocabulary, English literature, geometry, earth science, etc.  This 
atmosphere provides the necessary large problem-space range that would be seen in a general-purpose 
societal-scale implementation.  Also, with any individual in the world being able to participate, the use of 
DDD to weight the relative influence of heterogeneous individuals across all problem domains would be 
needed.  The system desired by McGraw-Hill® seems well suited as a preliminary test-bed for the future 
development of more sophisticated societal-scale systems. 
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5.3 The Societal Superorganism 
 

Function Organism Society SSDMS Components 
Sensor Perception apparatus Reporters, researchers, … Problem modeling 
Channel and Network Nerves, neurons Communication mediums Computer network 
Associator Synaptic learning Scientific discovery, 

social learning 
Solution modeling 

Memory Neural memory Libraries, collective 
knowledge, … 

Problem-space and 
solution-space 

Decider Higher brain functions Government, voters, … Decision-making 
Effector Muscle nerves Executives Solution Implementation 

 
Table 3: Societal-scale decision-making system as the Societal Superorganism framework 

 
Heylighen (2000), based on living systems work by Miller (1978), has made reference to human society as 
a superorganism carrying out the analogous behaviors of its human constituents.  The functional 
components of an organism (sensation, memory, etc.) have a macroscopic realization when scaled to the 
society at large.  In this work, a societal-scale decision-making system serves as an implementation 
potential for realizing a more efficient means by which society can carry out its information-processing 
behaviors—thus providing the framework for the network-based ‘Global-Brain’ argued by Heylighen 
(1997).  Through an implementation, the ability for the group to make greater use of the collective 
intelligence potential of the society can be realized in the sense that the decision-making no longer has to 
be centralized to geographic regions (i.e. state and national capitals), but instead can be unified by a 
network infrastructure capable of utilizing every humans unique abilities to model problems, model 
solutions, decide amongst alternatives and finally distribute implementation tasks. 
 

5.4 Conclusions and Summary 
 
The work presented in this thesis has impact for the future development of societal-scale decision-making 
systems.  Such systems will find themselves useful in institutions hoping to make use of the collective 
intelligence potential of the individuals comprising that institution.  Also, as network technologies come to 
support the policy-making infrastructure of political institutions, such decision-making systems may 
provide a more accurate representation of the collective’s perspective on policy issues.  Future work in the 
deployment of this system for its potential as a human-collective problem-solving system will provide an 
experimental backdrop to gauge the relative significance of these ideas and to provide incentive for the 
development and deployment of these ideas in real-world institutions. 
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